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1.1 Probability models

1.1.1 Introduction

We wish to construct mathematical models to enable us to do calculations with uncertainty.
This might concern the result of something yet to happen (next Saturday’s weather, the winner
of next year’s Grand National, the success of a space mission). Alternatively it might concern
something which is completely determined, but about which we lack precise knowledge (the
winner of yesterday’s Grand National if we have not heard the result, the value of a physical
constant about which we have limited information).
Specifically, we wish to assign probabilities to events. An event is something which may or may
not turn out to be the case (think of it as something on which you could place a bet).
For example, the individual outcome of Saturday’s weather might be the maximum tempera-
ture—perhaps along with a lot of other information. We might wish the probability of the event
that the maximum temperature will be at least 20◦C. This event is the collection (set) of all
those outcomes in which the maximum temperature is 20◦C or more.
Note that probabilities reflect our lack of precise knowledge. The probability of a given event
will change as our knowledge changes. As Saturday approaches it may become more or less
likely that the maximum temperature will be at least 20◦C.

as.zachary@hw.ac.uk
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1.1.2 Probability spaces

A probability space is the mathematical foundation of a probability model. It is usually taken
to consist of a triple (Ω,F ,P):

Ω is the sample space, i.e. the collection of all possible individual outcomes ω of the situation
under study;

F is the set of events which may be considered; an event E ∈ F is a set of possible outcomes
ω ∈ Ω, i.e. it is a subset of Ω (it follows that F is a set of subsets of Ω); the event E is
said to occur if the actual outcome ω belongs to E, i.e. ω ∈ E;

P is a probability measure which assigns a probability P(E) to every event E ∈ F .

Example 1.1. (Roulette wheel.) We wish to model the result of a single spin of a (single zero)
roulette wheel. It is natural to label the possible outcomes of this experiment as 0, 1, 2, . . . , 36
and hence to take the sample space Ω = {0, 1, 2, . . . , 36}. It is also natural to take F to be the
set of all subsets of Ω, i.e. any such subset may be considered an event. Finally, if the roulette
wheel is fair, and hence all outcomes equally likely, it is natural to define the probability of any
event E by P(E) = |E|/37, where |E| is the size of the set E. Some possible events and their
probabilities are:

• the event A that the number 36 comes up; we have A = {36} and P(A) = 1/37;
• the event Ac that the number 36 does not comes up; we have Ac = {1, 2, 3, . . . , 35} and

P(Ac) = 36/37;
• the event B that an odd number comes up; we have B = {1, 3, . . . , 35} and P(B) = 18/37;
• the event C that a number between 1 and 10 comes up; we have C = {1, 2, . . . , 10} and

P(C) = 10/37;
• the event B ∩C that both B and C occur; we have B ∩C = {1, 3, 5, 7, 9} and P(B ∩C) =

5/37;
• the event B ∪ C that either B or C occurs; we have B ∪ C = {1, 2, . . . , 10, 11, 13, . . . , 35}

and P(B ∪ C) = 23/37;
• the event A∩B that both A and B occur; we have A∩B = ∅ (the empty set) and P(∅) = 0;

Example 1.2. (Coin tossing.) A fair coin is tossed n times. It is natural to take the sample
space Ω to be the set of all possible outcomes of this experiment, where a single outcome is
a given sequence of heads and tails. It is easy to see (formally by induction [exercise!]) that
there are 2n such outcomes. It is again also natural to take F to be the set of all subsets of Ω.
Since the coin is fair, we assume that all 2n outcomes are equally likely, so that each is assigned
probability 2−n. For each of k = 0, 1, . . . , n, let Ak be the event that exactly k of the n tosses
turn out to be heads. Then, for each such k, we have P(Ak) = 2−n

(
n
k

)
. Note that the events Ak,

k = 0, 1, . . . , n, are disjoint (i.e. Ai ∩ Aj = ∅ for all 0 ≤ i < j ≤ k) and together have union
equal to the entire sample space Ω, that is to say that (whatever the outcome of the experiment)
exactly one of the events Ak occurs. We say that the events Ak, k = 0, 1, . . . , n form a partition
of the sample space Ω, and we have

∑n
k=0 P(Ak) = 1.

In both the above examples the sample space Ω is finite. In this case—and also more generally
when Ω is countable (see below)—there is never any difficulty in taking the set F above to be
the set of all subsets of Ω, and there is also no difficulty in defining the probability P(E) of
any event E to be the sum of the probabilities of the individual outcomes which comprise that
event. We require that the probabilities of these individual outcomes should be nonnegative and
should sum to 1.
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In general (e.g. when the sample space Ω is uncountable) we need to be more careful. First, as
we shall see in Section 1.1.4, it is not always possible to consider every subset of Ω as an event
(although in applications there are never any difficulties) and—at least in principle—F needs
to be explicitly identified. We require that F should be a σ-algebra. σ-algebras play a central
role in all but the most elementary understandings of probability theory and are discussed in
Section 1.1.3 below.
Secondly, when the number of the outcomes which define an event is uncountable, we cannot
simply define the probability of an event as a sum of the probabilities of the outcomes it contains.
Hence we require a more general rule for assigning probabilities directly to events. This is
discussed in Section 1.1.4.

1.1.3 σ-algebras

Recall first that a set is countable if it is finite or if it may be placed into a one-one correspondence
with the set of positive integers. Examples of countable sets are the set Z of integers and the
set Q of rational numbers. Examples of uncountable sets are the set R of real numbers and any
interval [a, b] ⊂ R where a < b. [Exercise: make sure you understand these examples.]
We now need to understand the set F of events to which probabilities may be assigned in a given
model. We require that F should be a σ-algebra, i.e. that it should have the following axiomatic
properties

(i) F is nonempty ;
(ii) if E ∈ F , then Ec ∈ F ;
(iii) if the countable collection of events E1, E2, · · · ∈ F , then

⋃
n≥1En ∈ F .

Thus a nonempty collection of subsets of Ω is a σ-algebra if it is closed under the operations of
taking complements and of taking countable unions. This implies that F is also closed under
countable applications of other standard set-theoretic operations. For example, if E1, E2, · · · ∈ F ,
then since

⋂
n≥1En =

(⋃
n≥1E

c
n

)c
, it follows that

⋂
n≥1En ∈ F ; thus F is closed under the

operation of taking countable intersections. It also follows that, in particular, the sets Ω (the
entire sample space) and ∅ (the empty set) always belong to the σ-algebra F . We remark, for
future use, that the σ-algebra F = (Ω, ∅) consisting of just these two sets is referred to as the
trivial σ-algebra.
At the other extreme, the set of all subsets of Ω is a σ-algebra. As remarked above, when the
sample space Ω is countable, we take this as the σ-algebra F associated with our probability
model. Thus every subset of Ω is a legitimate event, and we can effectively forget about F .
We shall see below that this simple approach is not possible in the case of uncountable sample
spaces.
It is also necessary to be able to define the smallest σ-algebra which contains a given collection
of subsets (events) of Ω. This is referred to as the σ-algebra generated by the given collection,
and is defined to be the intersection of all those σ-algebras each of which contains the given
collection of subsets. That this intersection of σ-algebras is itself a σ-algebra follows since it
necessarily has the required closure properties [exercise!].

Example 1.3. For any subset E of Ω (such that ∅ 6= E 6= Ω) the σ-algebra G(E) generated by
E consists of 4 sets and is given by

G(E) = {∅, E,Ec,Ω}.

To see this, observe that this is a σ-algebra, and is clearly the smallest σ-algebra which contains
E.
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Example 1.4. Let {E1, E2, . . . } be a partition (finite or countably infinite) of Ω, i.e. a collection
of disjoint subsets of Ω (Ei ∩Ej = ∅ whenever i 6= j) whose union is the entire sample space Ω.
Then the σ-algebra G(E1, E2, . . . ) generated by this partition consists of all countable unions of
sub-collections of the events E1, E2, . . . . To see this, again observe that this is a σ-algebra, and
is clearly the smallest which contains all of the events E1, E2, . . . .

The Borel σ-algebra. Consider the experiment of choosing, or the observation of, a point
randomly distributed on the real line R. At a minimum we will wish to be able to consider as
an event (that the point lies within) any given interval within R, where either endpoint of the
interval may be open or closed and where the interval may be finite, half-infinite (e.g. (−∞, a]
or (a,∞) for some a ∈ R) or indeed ∅ or R itself. Therefore we need to be able to consider, and
to assign probabilities to sets within, the σ-algebra generated by such intervals. This is referred
to as the Borel σ-algebra on R, and is usually denoted by B. The sets within it are referred to
as the Borel sets. Notably B contains all the intervals as above, and also all countable unions of
intervals—in particular B contains all finite and countably infinite sets. While it is convenient to
think of it as the σ-algebra generated by the intervals, it is also generated by smaller collections
of sets, e.g. all sets of the form (−∞, a] for a ∈ R.
The Borel σ-algebra may be similarly defined on any interval within R, again as the σ-algebra
generated by the intervals within this interval. (We might. for example, wish to consider the
experiment of choosing a number at random on the interval [0, 1].)
In another direction the Borel σ-algebra may also be defined on the product space R× R× . . .
of finite or countably infinite sequences x = (x1, x2, ...) where each xi ∈ R. (For example, we
might wish to consider a sequence of random numbers.) In this case the Borel σ-algebra is that
generated by the cylinder sets of the form {x : xi ∈ B} for all i and for all Borel sets B contained
in R.

1.1.4 Probability measures

Given a sample space Ω and a σ-algebra F of events within Ω, a probability measure P is a
function on F which satisfies the following axioms.

P1: For any event E ∈ F ,
0 ≤ P(E) ≤ 1.

P2: For the entire sample space Ω,
P(Ω) = 1.

P3: (Extended addition rule) For any countable set of disjoint events (Ej , j ∈ J) in F (i.e.
such that Ei ∩ Ej = ∅ for all i, j ∈ J with i 6= j),

P
(⋃

j∈J

Ej

)
=
∑
j∈J

P(Ej).

Note that (in the usual treatment of probability theory) it is insufficient to require the prop-
erty P3 to hold for finite collections of disjoint events; we need—notably in the theory of stochas-
tic processes—to be able to work with countable unions and intersections of events. In particular
the continuity rules P9 and P10 below follow from P3 as applied to countable sets.
We have already remarked that when the sample space Ω is countable and the σ-algebra F is
the set of all subsets of Ω, then we may associate probabilities, nonnegative and summing to 1,
with the individual outcomes in Ω, and define the probability of any event E ∈ F as the sum
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of probabilities associated with the individual outcomes in E. It is clear that the probability
measure thus defined does indeed satisfy the axioms P1–P3, and conversely that any probability
measure P on F , necessarily satisfying P1–P3, may always be constructed as above.
When the sample space Ω is uncountable, it is not in general possible to assign probabilities as
above, nor even to assign a probability to every subset of Ω. The following example discuses in
detail how to proceed when Ω is the real line.

Example 1.5. (Choosing a number at random on the real line R.) Suppose that we wish to
choose a number at random on R. As previously discussed it is necessary to define an appropriate
probability measure P on R endowed with (at least) the Borel σ-algebra B. Suppose first that
we have such a probability measure P. Define the distribution function F of P by

F (x) = P((−∞, x]), x ∈ R. (1.1)

Then F has the following properties:

(i) F is increasing ;
(ii)

lim
x→−∞

F (x) = 0, lim
x→∞

F (x) = 1;

(iii) F is right continuous, i.e.

lim
x′↓x

F (x′) = F (x) for all x ∈ R.

Note that, since F is increasing, for all x ∈ R, both the right limit limx′↓x F (x′) and left limit
limx′↑x F (x′) always exist, but the left limit is equal to F (x) if and only if F has no jump at x,
i.e. F is continuous at x.
The properties (i)–(iii) follow from the axioms P1–P3, but are most easily deduced once we have
used these axioms to establish some further properties of probability measures below.
Conversely, suppose we are given a function F on R with the above properties (i)–(iii). Then
it is an exercise in measure theory to show that there exists a unique probability measure P on
(R,B), where B is the Borel σ-algebra, such that (1.1) holds. For example, for any interval of
the form (a, b], we necessarily have, from P3,

P((a, b]) = P((−∞, b])−P((−∞, a])
= F (b)− F (a).

The probability assigned by P to any individual point x ∈ R is

P({x}) = lim
x′↑x

P((x′, x]) (by P10 below)

= F (x)− lim
x′↑x

F (x′),

which is the size of the jump in the function F at the point x; we have P({x}) = 0 if and only
if F is continuous at x. Also, by P3, the probability assigned by P to any countable union of
disjoint intervals is the sum of the probabilities assigned by P to the individual intervals.
Finally suppose that we are given any probability measure P on the Borel σ-algebra B as above.
It is both possible and convenient to extend the domain of definition of P to the enlarged σ-
algebra which is defined to be the smallest σ-algebra which includes both sets in B and also all
subsets of sets with probability measure 0. This latter σ-algebra is the completion of the Borel
σ-algebra B with respect to P.
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Example 1.6. (Choosing a number uniformly at random on the interval [0, 1].) Suppose that
we wish to choose a number uniformly at random from within the interval [0, 1]. (This is what
the random number generator on a computer is supposed to mimic.) We proceed as in the
previous example, replacing the sample space Ω = R by Ω = [0, 1]. The distribution function F
on Ω = [0, 1], given by

F (x) = x, x ∈ [0, 1],

defines the uniform probability measure P on (Ω,B) (where B is again the Borel σ-algebra).
In particular, the probability assigned by P to any interval in [0, 1] is given by its length, and
the probability assigned by P to any single point in the interval [0, 1] is 0. It can further be
shown that it is not possible to extend the domain of definition of P to the set of all subsets
of [0, 1] while continuing to satisfy the axioms P1–P3 above, i.e. for the uniform probability
measure P, there exist subsets of [0, 1] which cannot be considered as events (though such sets
are very exotic). However, the Borel σ-algebra B may be completed with respect to the uniform
probability measure P as described above to obtain the Lebesgue σ-algebra.

Further properties of probability measures. From the axiomatic properties P1–P3 de-
fined above, we can easily derive the following further properties.

P4 (Complement rule) For any event E,

P(Ec) = 1−P(E).

This is one of the most useful properties of probability measures. In complex problems
it is often simpler to calculate the probability of the complement of an event of interest.
Note also that it follows from P2 and P4 that P(∅) = 0 always.

P5 (Disjoint intersection rule) If the events E and F disjoint (i.e. E ∩ F = ∅), then

P(E ∩ F ) = P(∅) = 0.

[Recall the E ∩ F is the event that both E and F occur.]
P6 (Inclusion-exclusion rule) For any two events E and F ,

P(E ∪ F ) = P(E) + P(F )−P(E ∩ F ).

This is proved, for example, by noting that, from P3, we have the two relations

P(E ∪ F ) = P(E) + P(F \ E)
P(F ) = P(E ∩ F ) + P(F \ E).

and eliminating P(F \ E) (recall the F \ E is the event that F but not E occurs).

Example 1.7. Outside work on an oil platform cannot proceed if it is either too wet or too
windy. The probability of the event A that work is cancelled because it is too wet is 0.3, and the
probability of the event B that work is cancelled because it is too windy is 0.2. The probability
of the event A ∩ B that it is simultaneously both too wet and too windy is 0.1. Find the
probability that work can proceed.
The event that it is either too wet or too windy is A ∪B and we have, by P6,

P(A ∪B) = P(A) + P(B)−P(A ∩B) = 0.3 + 0.2− 0.1 = 0.4.

The event C that work can proceed is the complement of the event A∪B and hence, by P4, the
probability that work can proceed is given by

P(C) = 1−P(A ∪B) = 1− 0.4 = 0.6.
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P7 (Subset rule) If E ⊆ F , then
P(E) ≤ P(F ).

P8 (Boole’s inequality) For any countable collection of events E1, E2, . . . (finite or infinite),

P
(⋃

all n

En

)
≤
∑
all n

P(En).

(Compare this with the property P3 for disjoint sets.)
P9 (Continuity rule for increasing sequences) Let (En, n ≥ 1) be an increasing sequence

of events, i.e.
E1 ⊆ E2 ⊆ E3 ⊆ . . . .

Then

P
(⋃

n≥1

En

)
= lim

n→∞
P(En).

To see this, note that the event
⋃

n≥1En is also the union of the sequence of disjoint
events (Fn, n ≥ 1) where F1 = E1 and Fn = En \

⋃n−1
i=1 Ei. Hence, from P3,

P
(⋃

n≥1

En

)
= P

(⋃
n≥1

Fn

)

= lim
n→∞

P
( n⋃

m=1

Fm

)
= lim

n→∞
P(En).

As a special case, note that when
⋃

n≥1En = Ω, then limn→∞P(En) = P(Ω) = 1.

Also as a more general corollary we have that, for any countable sequence of events
(En, n ≥ 1),

P
(⋃

n≥1

En

)
= lim

n→∞
P
( n⋃

i=1

Ei

)
.

P10 (Continuity rule for decreasing sequences) Let (En, n ≥ 1) be an decreasing sequence
of events, i.e.

E1 ⊇ E2 ⊇ E3 ⊇ . . . .

Then

P
(⋂

n≥1

En

)
= lim

n→∞
P(En).

To see this, note that the sequence of complements (Ec
n, n ≥ 1) is increasing, and so, from

P9,

P
(⋂

n≥1

En

)
= 1−P

((⋂
n≥1

En

)c)
= 1−P

(⋃
n≥1

Ec
n

)
= 1− lim

n→∞
P(Ec

n)

= lim
n→∞

P(En).

As a special case, note that when
⋂

n≥1En = ∅, then limn→∞P(En) = P(∅) = 0.
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Also as a more general corollary we have that, for any countable sequence of events
(En, n ≥ 1),

P
(⋂

n≥1

En

)
= lim

n→∞
P
( n⋂

i=1

Ei

)
.

Example 1.8. Suppose that, as in Example 1.2, a fair coin is tossed n times. Let A0 be the
event that no heads are obtained and let B be the event that at least 1 head is obtained. Suppose
we require P(B). We have

P(B) = 1−P(Bc) = 1−P(A0) = 1− 2−n.

Suppose now that the coin is tossed infinitely often. We take Ω to be the set of all possible
infinite sequences of heads and tails (this is the product space {H,T} × {H,T} × . . . ) and the
corresponding σ-algebra F to be that generated by the cylinder sets as in the discussion of the
Borel σ-algebra in Section 1.1.3, i.e. to be the smallest σ-algebra which contains all events of
the form “the ith toss is a head”. Suppose that we require the probability of the event B that
at least one head is ever obtained. For each n ≥ 1 define also Bn to be the event that at least
one head is obtained in the first n tosses. Then B1 ⊂ B2 ⊂ . . . and so it follows from P9 that

P(B) = P
(⋃

n≥1

Bn

)
= lim

n→∞
P(Bn) = lim

n→∞
(1− 2−n) = 1.

1.1.5 Random variables

Example 1.9. Suppose that we are again interested in the number of heads obtained in n tosses
of the fair coin. It is convenient to denote this by X. The observed value X(ω) of the random
variable X depends on the outcome ω of the experiment. Thus, formally, the random variable X
is a function defined on the sample space Ω. For example, if the coin is tossed 3 times we have

outcome ω: HHH HHT HTH HTT THH THT TTH TTT
X(ω): 3 2 2 1 2 1 1 0

For any k = 0, 1, . . . , n the set {ω : X(ω) = k} is just the event that X = k, i.e. the event Ak

defined in Example 1.2 that precisely k heads are obtained.
Since the coin is fair and all outcomes (sequences of heads and tails) of the n tosses are considered
equally likely, we have

P(X = k) = P(Ak) = 2−n

(
n

k

)
, k = 0, 1, . . . , n.

This information (the probabilities associated with the different values, or ranges of values, that
X may take) is referred to as the distribution of the random variable X. It may be given in many
different forms. In particular, the function fX given by fX(k) = P(X = k) for k = 0, 1, . . . , n is
referred to as the probability function (or, sometimes, probability mass function) of the random
variable X. The function FX given by FX(k) = P(X ≤ k) for k = 0, 1, . . . , n, is referred to
as the distribution function (or, occasionally, cumulative distribution function) of the random
variable X. Clearly either may be computed from the other, and so both convey the same
information.
Now define also the random variable Y to be the number of tails obtained in the n tosses of
the fair coin. We have Y = n − X, so clearly X and Y are different. However, for all k, we
have P(X = k) = P(Y = k) = 2−n

(
n
k

)
, so two different random variables may have the same

distribution.
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We now consider the general definition of a (real-valued) random variable X on a probability
space (Ω,F ,P). Clearly X has to be a function from Ω to R (or to some subset of R). For
any such function X and any subset B ⊆ R, define X−1(B) = {ω : X(ω) ∈ B}, i.e. the set of
outcomes ω for which X(ω) belongs to the set B. For X to be a random variable, we clearly
require

X−1(B) ∈ F , (1.2)

i.e. X−1(B) to be an event (to which we can assign a probability) for all sets B of interest, e.g.
B = (−∞, x] or B = {x} for any x ∈ R. It is a straightforward result that the collection of sets
B for which (1.2) holds is itself a σ-algebra on R, so we can most neatly express our requirement
as that (1.2) should hold for all B belonging to the Borel σ-algebra B on R. Formally we say
that the function X from Ω to R should be measurable—more precisely that it should be (F ,B)-
measurable. (However, note that, also from the above result, to show X is measurable it will be
sufficient to verify (1.2) for Borel sets B which generate B, e.g. all sets of the form B = (−∞, x],
x ∈ R.) We therefore make the following definition.

Definition 1.1. A (real-valued) random variable X on (Ω,F ,P) is a measurable function from
Ω to R.

[Exercise: prove the result in the above paragraph: use observations such as {ω : X(ω) ∈ Bc} =
{ω : X(ω) ∈ B}c.]
Random variables are further discussed in Lecture 3.

1.2 Classical Probability

1.2.1 Introduction

As we have already seen, there are many probability models (e.g. coin tossing, urn models) in
which the sample space Ω contains some finite number n of possible outcomes (sample points)
each of which is considered equally likely and each of which is therefore assigned probability
1/n. The σ-algebra F is taken to be the set of all subsets of Ω and the probability P(E) of any
event E ∈ F is then given by

P(E) =
|E|
n
, (1.3)

where |E| denotes the total number of outcomes comprising the event E.
Thus many problems in probability theory involve counting. This is not as easy as it seems.

1.2.2 Fundamental counting results

Suppose that we have n objects (let them be labelled 1, 2, . . . , n), and that we wish to choose k
of them. In how many ways can we do this? The answer depends on

• whether the k objects are to be chosen

– without replacement, i.e. each of the n objects may be chosen at most once (so that,
if n = 8 and k = 4, the choice (1, 3, 1, 2) is not allowed)

– with replacement, each of the n objects may be chosen as often as we like (the choice
(1, 3, 1, 2) is allowed);

• whether the k objects are considered as

– an ordered collection, i.e. different orderings of the same k objects are counted as
distinct (so, with n = 8 and k = 4, the choices (1, 2, 4, 6) and (6, 2, 1, 4) are distinct)
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– an unordered collection, i.e. different orderings of the same k objects are counted as
being the same.

We have the following results.

• Without replacement, ordered. For this we require k ≤ n. Then the k objects may be
obtained in

n(n− 1) . . . (n− k + 1) =
n!

(n− k)!

different ways. To see this, note that there are n ways to choose the first, n − 1 ways
to choose the second, etc, and that the total number of ordered choices is the product of
these. [Why?]
• Without replacement, unordered. For this we again require k ≤ n. Since the k objects to

be chosen are required to be distinct, each unordered set of them may be ordered in k!
different ways. Hence the total number of unordered choices is the total number of ordered
choices divided by k!, and, from the previous result, this is the binomial coefficient(

n

k

)
=

n!
k!(n− k)!

.

• With replacement, ordered. (Here there are no restrictions on n and k.) Arguing as for
the first result above, we find that the k objects may be obtained in nk different ways.
• With replacement, unordered. (Here again there are no restrictions on n and k.) This time

the argument is slightly more tricky. Consider any given unordered collection of size k of
objects, where each of these has one of the labels 1, 2, . . . , n. For example, for n = 10,
k = 7, we might have the choice (with numbers arranged in ascending order) given by
(1, 2, 2, 4, 6, 6, 6). Represent this choice instead as

◦ | ◦ ◦ || ◦ || ◦ ◦ ◦ ||||

where (in general) the k circles represent the k objects and the n−1 vertical bars separate
the assigned labels 1, 2, . . . , n. Then the number of distinct choices is the number of distinct
patterns as above, and this is the number of ways in which, out of n + k − 1 symbols, k
may be chosen as circles to correspond to the k objects (the remaining n−1 symbols being
the vertical bars). Hence, finally, he number of ways in which the k objects may be chosen
is the binomial coefficient (

n+ k − 1
k

)
=

(n+ k − 1)!
k!(n− 1)!

.

Remark 1.1. Another interpretation of the last result: the answer can also be seen as the number
of different ways in which k indistinguishable objects, e.g. balls, can be placed in a total of n
bins (where some bins may be empty).

1.2.3 Use of multinomial coefficients

Suppose that, in a population of distinct n objects, each is to be assigned to one of r numbered
groups, in such a way that there are ki objects in the ith group, 1 ≤ i ≤ r, where (necessarily)∑r

i=1 ki = n. Then the number of ways in which this can be done is given by the multinomial
coefficient

n!
k1! . . . kr!

. (1.4)
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To see this, note that the number of possible choices of objects for assignment to the first group
is the binomial coefficient

(
n
k1

)
; given any such choice, the number of possible further choices for

assignment to the second group is the binomial coefficient
(
n−k1

k2

)
, and so on; once the choice of

objects for the (r − 1)st group have been made, the remaining objects automatically go in the
rth group. Hence the total number of assignments of objects to groups is(

n

k1

)(
n− k1

k2

)
. . .

(
kr−1 + kr

kr−1

)
,

and this is easily seen to evaluate to the expression in (1.4).
In the special case r = 2 the expression in (1.4) reduces to the binomial coefficient

(
n
k1

)
(in this

case note again that once the k1 objects for the first group have been chosen, the remaining
objects necessarily go in the second group).
Note that, according to the statement of the problem, the order or numbering of the groups is
important, but not the order of the objects within each group. For example, in the case n = 4,
k1 = k2 = 2 (and numbering the objects 1, 2, 3, 4) the 6 possible assignments are

(12)(34) (34)(12) (13)(24) (24)(13) (14)(23) (23)(14).

or equivalently, in a dual notation,

1122 2211 1212 2121 1221 2112 (1.5)

where, for example, 1122 means that the first and second objects are assigned to group 1, while
the third and fourth are assigned to group 2.
An alternative physical formulation of the same mathematical problem is the following. Suppose
that, of n balls, ki have the colour i for 1 ≤ i ≤ r, where (again necessarily)

∑r
i=1 ki = n. In

how many different ways (distinct sequences of colours) can these balls be arranged? It is easy
to see that the answer is again given by (1.4) (e.g. consider again the above example, and see
that (1.5) now represents the various possible arrangements).
In the original formulation of the problem, and in the special case k1 = · · · = kr, we might also
wish to consider the problem in which the order or numbering of the groups is not important.
(Thus, in the above example, the assignments (12)(34) and (34)(12) would be considered the
same.) In this case the number of possible assignments of objects to groups is given by dividing
the expression in (1.4) by r!.

Example 1.10. A total of 12 people are to be divided into 3 groups of 4 each (so as to take
part in some tournament). The order of the groups is unimportant. According to the above the
number of ways in which this can be accomplished is

12!
3!(4!)3

= 5775

(a result which may easily be checked by direct counting).

1.3 Exercises

1–1. A physical device only works if the ambient temperature lies within the range [T1, T2]
(where T1 < T2). Suppose that the probability of the event A that the temperature is
below T2 is 0.6, and that the probability of the event B that the temperature is above T1

is 0.75. Show that the probability that the device works is 0.35
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1–2. A fair die (one for which each face is likely to show) is given two independent throws, so
that all 36 outcomes are equally likely. Find the distribution of the random variable N
which is defined to be the total of the numbers obtained on the two throws. Show that
the most likely value for this total is 7.

1–3. (Chung.) Six mountain climbers decide to divide into three groups for the final assault on
the peak. The groups will be of sizes 1, 2, 3 respectively, and all orders of assault by the
three groups are considered. Show that the that the total number of possible groupings
and assault orders is 360. In the case where instead each of the three groups is to be of
size 2, show that the above total reduces to 90. Understand why the same formula is not
applicable in both cases.

1–4. An urn contains 5 red and 3 green balls. Three balls are chosen at random, in succession,
and without replacement.

(a) Show that the probability that all three balls drawn are red is 5/28.

(b) Show that the probability that the third ball drawn is red is 5/8. (Make sure you
give a quick derivation of this result.)

Show also that in the case where instead the balls are drawn with replacement, the above
probabilities become 125/512 and 5/8 respectively.

1–5. Hypergeometric distribution. Suppose that n objects are partitioned into a objects of
Type 1, say, and n − a objects of Type 2. A random choice is made of b objects, all

(
n
b

)
choices being equally likely. Let the random variable X denote the number of those objects
chosen which are of Type 1. Show that

P(X = k) =

(
a

k

)(
n− a
b− k

)
(
n

b

) ,

where, necessarily, max(0, a+ b− n) ≤ k ≤ min(a, b).

1–6. (Chung.) A pack of cards is shuffled and the cards are then dealt one at a time. Show
that the probability that the 4 aces occur consecutively is 24/(52× 51× 50).

1–7. Bose Einstein statistics. Suppose that k indistinguishable objects are to be placed in n
numbered boxes. Show that the number of ways in which this can be done is(

n+ k − 1
k

)
.

(Understand that this is just the same as the “With replacement, ordered” problem con-
sidered in Section 1.2.2.)

1–8. Birthday problem. Suppose there are n days in the year (on Earth we have n = 365, but
it may be different elsewhere). Show that, in a gathering of k people, the probability pn,k

that at least two share the same birthday is given by

pn,k = 1− n− 1
n

n− 2
n

. . .
n− k + 1

n
.

For n = 365 show that the smallest value of k such that pn.k > 0.5 is given by k = 23.
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1–9. Matching problem. A collection of n letters fall out of their envelopes and are replaced at
random. Let the random variable N be the number of letters which are replaced in their
correct envelopes.

(a) In the case n = 4, find the distribution of the random variable N (i.e. find P(N = k)
for k = 0, 1, . . . , 4).

(b) For each of n = 1, 2, . . . , 6, find the probability P(N = 0) that no letters are replaced
in their correct envelopes.

(c) Show that, as n→∞, the above probability converges to e−1 (difficult).
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